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Smart Money? 

The Forecasting Ability of CFTC Large Traders 
  

Practitioner’s Abstract 
 
The forecasting ability of the Commodity Futures Trading Commission’s Commitment’s of Traders 
data set is investigated.  Bivariate Granger causality tests show very little evidence that traders’ 
positions are useful in forecasting (leading) market returns.  However, there is substantial evidence 
that traders respond to price changes.  In particular, non-commercial traders display a tendency 
for trend-following.  The other trader classifications display mixed styles, perhaps indicating that 
those trader categories capture a variety of traders.  The results generally do not support the use of 
the Commitment’s of Traders data in predicting market movements. 
 
Key Words: Commitment’s of Traders, futures markets, forecasting   

 
Introduction 

The Commodity Futures Trading Commission’s (CFTC) Commitment of Traders (COT) report 
highlights the aggregate futures positions held by reporting (large) traders, both commercial 
(hedgers) and non-commercial (speculators).  Commodity futures traders often view these data as 
akin to insider information about the positions of “smart money” traders and tout its usefulness in 
predicting price movements, where “indicators derived from the participant activity can provide 
insight into the future direction of price” (Upperman, p. 1).  This contrasts with the CFTC’s use of 
the reports as a component of the market monitoring and Large Trader Reporting System (CFTC). 
 
Several academic studies have investigated the ability of large traders to predict or forecast returns 
in futures markets.   For example, in an early look at this topic, Kahn uses the COT report to mimic 
the positions of reporting non-commercial traders.  He finds that following their positions (upon 
release of the COT reports) does not generate statistically significant profits.  More recently, Wang 
found that over intervals from one to twelve weeks, that non-commercial traders’ positions forecast 
price continuations and commercial traders forecast price reversals.  In the energy markets, 
Buchanan, Hodges, and Theis, find that non-commercial speculative positions provide information 
on the magnitude and direction of weekly price changes in the natural gas futures market.   In 
contrast, Sanders, Boris, and Manfredo fail to find any evidence that reporting traders’ positions, 
either commercial or non-commercial, are useful in predicting weekly energy futures returns.  Most 
recently, Bryant, Bessler, and Haigh use causal inference algorithm’s to test for relationships 
between traders’ positions from the COT reports and futures prices.  The author’s results “call into 
question the usefulness of the COT data in formulating successful speculative strategies” (p. 1054).    
While these studies are important, recent shifts in market participation warrant further investigation. 
 
In recent years, academic studies have shown that commodity futures portfolios can generate 
returns comparable to equities (Gorton and Rouwenhorst).  As a result, the financial industry has 
developed products that allow institutions to “invest” in commodities through long-only index 
funds.  The rapid growth in these non-traditional speculators has led traders to claim that the 
excessive speculation is creating “price distortions” in traditional agricultural commodity markets 
(Morrison, 2006).   Indeed, Domanski and Heath argue that the “financialisation” of commodity 
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markets warrants additional study on the strategies, motivation, and the potential market impact of 
non-traditional traders.  Along these lines, the CFTC recently reviewed the COT reports and have 
added an “index trader” category to the COT classifications for agricultural commodities (CFTC).  
Clearly, the markets are changing, and it is important that researchers, regulators, and market 
participants understand the relationship (if any) between trader positions and price behavior  
 
The goal of this research is to thoroughly address the predictive value of trader positions in 
agricultural futures markets.  Specifically, Granger causality will be used to directly test for the 
impact of traders’ positions on futures returns using weekly data from 1992 through 2006.  A 
number of different position measures will be used to explore the sensitivity of the results to these 
“indicators.”  Trading styles are also revealed by examining the causality from returns to positions, 
revealing if CFTC traders are trend followers or adhere to value or contrarian type strategies. 
 
The research results are of interest to academics and traders alike.  Academic researchers gain a 
more thorough understanding of this important data.  Also, the research will help to answer some 
crucial questions about trader behavior and the potential impact of speculation on agricultural 
futures prices.  Finally, traders and other market participants will benefit from a rigorous analysis of 
the COT data.   Analysts may find that the COT data provides little insight as to future price 
direction.  Or, alternatively, they may want to start following the “smart money.” 
 

COT Data 
The COT report provides a breakdown of each Tuesday’s open interest for markets in which 20 or 
more traders hold positions equal to or above the reporting levels established by the CFTC.  The 
weekly reports for Futures-Only Commitments of Traders and for Futures-and-Options-Combined 
Commitments of Traders are released every Friday at 3:30 p.m. Eastern Standard Time. 
 
Reports are available in both a short and long format. The short report shows open interest 
separately by reportable and non-reportable positions. For reportable positions, additional data are 
provided for commercial and non-commercial holdings, spreading, changes from the previous 
report, percentage of open interest by category, and number of traders.  The long report, in addition 
to the information in the short report, also groups the data by crop year, where appropriate, and 
shows the concentration of positions held by the largest four and eight traders.   
 
In early 2007, as a response to complaints by traditional traders about index traders, the CFTC 
released supplemental reports which also break out the positions of index traders for twelve 
agricultural markets.  The release of this report offers historical data starting in 2006, and it largely 
confirms the presupposition that index traders are generally long-only traders.  As an example, in 
the corn futures market, index traders are 96% long and hold roughly 12% of the open interest.  In 
Chicago Board of Trade wheat futures, index traders are reported to remain 95% long and maintain 
21% of the market’s open interest.  The traders in the index category were found to have come from 
both the commercial and non-commercial categories.  As expected, index traders seldom alter 
positions other than to roll contract months, resulting in virtually no variation in their directional 
position.  The index trader data is insightful in regards to market composition, and it undoubtedly 
will warrant alternative paths of inquiry.  However, for the focus of this research, the negligible 
variation in these “long-only” traders’ positions makes it highly unlikely that they contain any 
predictive power.  Likewise, the strategies and motivations for this group of traders are clear.  
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Therefore, here, we focus on the traditional CFTC classifications: commercials, non-commercials, 
and non-reporting traders. 
 
Using the information in the short report, non-commercial open interest is divided into long, short, 
and spreading; whereas, commercial and non-reporting open interest is simply divided into long or 
short.  The following relation explains how the market’s total open interest (TOI) is disaggregated: 
 

(1)  )(2][][)](2[
ReportingNonReporting

TOINRSNRLCSCLNCSPNCSNCL =++++++
−

44344214444444 34444444 21
  

 
where, NCL, NCS, and NCSP are non-commercial long, short, and spreading positions, 
respectively. CL (CS) represents commercial long (short) positions, and NRL (NRS) are long 
(short) positions held by non-reporting traders.  Reporting and non-reporting positions must sum to 
the market’s total open interest (TOI), and the number of longs must equal the number of short 
positions.  
 
Data on trader positions are collected for each Tuesday from 1995 through 2006, resulting in 616 
observations.  The COT data reflects traders’ positions as of Tuesday’s close; although, for much of 
the sample it is not released until Friday.  A matching set of futures returns, Rt = ln(pt/pt-1), are 
calculated for nearby futures using Tuesday-to-Tuesday closing prices.  We make no assumptions 
about how or why traders’ positions might change over the course of a week, and the data are 
organized such that the collected prices are coincidental with the reported positions. 
 

Position Indicators 
Prior research results have varied, potentially due to alternative measures of position size.  For 
example, Sanders, Boris and Manfredo utilize the a measure of speculative pressure proposed by De 
Roon, Nijman, and Veld and fail to find any market impact caused by trader groups.  In contrast, 
Wang utilizes a “sentiment index” that normalizes positions by there three year range.  Using this 
index, Wang finds a market impact of in some agricultural futures.  The disparity of results suggests 
that multiple position indicators should be utilized to understand the robustness of the results. 
 
The first position indicator utilized is the “percent net long” (PNL), which measures the net position 
of the average trader in a CFTC classification (De Roon, Nijman, and Veld).  The PNL is calculated 
as the long minus the short positions divided by their sum.  For instance, the percent net long for the 
reporting non-commercials is defined as follows: 
 

(2)   
tt

tt
t NCSNCL

NCSNCLPNL
+
−

= Commercial-Non . 

 
The PNL for each CFTC classification represents the net position held by the group normalized by 
their total size.   
 
The second position measure is Wang’s “sentiment index”, SIi,t.  Wang defines the net long position 
for each trader category, Si,t, as the total long positions minus the total short positions for that 
category at time t.  Then, Wang defines his sentiment index by normalizing the net long position by 
its range over the prior three years, 
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Where, the minimum and maximum functions are applied to the prior three years.  Wang’s 
sentiment index is essentially an oscillator bound in the range (0,1).  A value of 0 indicates that the 
net long position is at a three year low, while a value of 1 occurs when the net long position or 
trader sentiment is at a three year high. 
 
The use of multiple position measures is important to make the empirical results comparable to the 
literature and more robust.   In the following section, we demonstrate how these position measures 
are used to uncover statistical lead-lag relationships within the data using Granger causality.  
 

Method 
Hamilton suggests the direct or bivariate Granger test for examining the lead-lag or “causal” 
relationship between two series.  Granger causality is a technique for determining whether one time 
series is useful in forecasting another.  It consists of running a vector autoregression (VAR) and 
then testing the resulting coefficients.  A VAR with two time series variable, xt and yt, consists of 
two equations: in one, the dependent variable is yt; in the other the dependent variable is xt. The 
regressors in both equations are lagged values of both variables.  More generally a VAR with k time 
series variables consists of k equations, one for each of the variables, where the regressors in all 
equations are lagged values of all the variables.  The coefficients of the VAR are estimated by 
estimating each of the equations using OLS.  Under the VAR assumptions the OLS estimators are 
consistent and have a joint normal distribution in large samples, and statistical inference proceeds in 
the usual manner. 
 
In our case the two time series variables we use are futures returns and trader positions (PNL or SI).    
The following models are estimated, 
 

(4)  ∑ ∑
= =

−− +++=
m

i

n
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Each model is estimated for lag lengths of 1 to 12, and the lag structure of the most efficient model 
is selected by minimizing the AIC criteria.   The models are estimated with OLS.  If the residuals 
demonstrate serial correlation (Breusch-Godfrey Lagrange multiplier test), the additional lags of the 
dependent variable are added until the null of no serial correlation cannot be rejected.  We test for 
heterskedasticity using White’s test (1980), and White’s robust errors where used to correct the 
standard errors.   
 
In equation (4), the null hypothesis of interest is that traders’ positions (PNL) cannot be used to 
predict (do not lead) market returns:, 0:0 =jH β for all j.  A rejection of this null hypothesis would 
provide evidence trader positions are indeed useful for forecasting market returns.  In order to gauge 
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the aggregate impact of trader positions, we also test the null hypothesis that 0
1

=∑
=

n

j
jβ , which will 

reveal the cumulative impact of traders positions on returns (if any).  Finally, the null hypothesis if 
full rationality (efficiency) in futures returns ( jiji ,0∀== βγ ) and autocorrelation in returns 
( ii ∀= 0γ ).   
 
In equation (5) there are two null hypothesis of interest.  First, do returns lead traders’ positions, 

0=jθ  for all j?  Second, what is the cumulative impact of past returns on traders’ positions 

( 0
1

=Θ∑
=

n

j
j ).  If we reject that 0=jθ  and find that 0

1
>Θ∑

=

n

j
j , then the trader group may be 

classified as trend followers or “positive feedback” traders because they increase their long position 
after prices increase and vice versa.   Conversely, traders who buck the trend may be called 
“negative feedback” traders or contrarians.  In equation (5), contrarians are characterized by finding 

that 0≠jθ  and  0
1

<Θ∑
=

n

j
j .  These traders tend buy after price declines and sell after price rallies, 

essentially a counter-trend strategy.   The tests outlined in equations (4) and (5) will provide 
important insight in regards to the usefulness of the COT data in predicting price movements and 
the trading “style” of each trader group. 

 
Results 

Trends in Positions 
The data are first examined visually to reveal simple trends and basic characteristics.  In this 
section, we concentrate on a major feed grain, corn, and a major livestock market, live cattle.  The 
trends in these futures markets are generally representative of the agricultural markets included in 
the study.  Figure 1 shows the total open interest (futures plus delta-adjusted options) for corn 
(panel A) and live cattle (panel B).   Total open interest for corn was relatively steady between 500 
and 700 thousand contract through mid-2003.  Then, open interest increased steadily to over 2 
million contracts in late 2006.   Over the same period, live cattle open interest experienced a 
doubling from 300 thousand to 600 thousand contracts.  Many market participants attribute this 
increase to greater overall speculative activity, including long-only index funds (O’Hara).  
However, as shown in Figure 2, the COT trader classifications are unable to confirm (or deny) this 
conjecture.  Indeed, over the same time period, the commercial corn positions (panel A) were 
relatively flat at 45%-50% of total open interest.  But, there was marked increase in non-commercial 
activity from roughly 30% of open interest to more than 35% of open positions.  However, this 
increase came mostly at the expense of non-reporting speculators, whose open interest declined 
from nearly 25% to below 15%.   Similar trends are shown for live cattle (panel B), where 
commercial positions are relatively stable and the non-commercial position size increases at the 
expense of the non-reporting group.  Since non-reporting traders are not classified as commercial or 
non-commercials, we do not know if there was a relative loss of commercial or speculative traders.  
Still, it is clear from Figures 1 and 2 that the markets seem to have undergone some structural 
changes since 2003, which gives rise to this investigation. 
 
In this research, two position measures—percent net long (PNL) and the sentiment index (SI)—are 
utilized to summarize the net position held by each trader category.  To illustrate these measures 
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through time, the PNL and SI for non-commercial corn positions are plotted in Figure 3.  In Figure 
3, it is clear that the PNL and SI are highly correlated in both corn (panel A) and live cattle (panel 
B) with a simple correlation coefficients in excess of 0.90.  Because of the high correlation across 
measures, it is unlikely that the empirical methods will generate dramatically different results across 
alternative position measures. 
 
Traders often cite the COT positions as a cause of price moves or a reason to expect a “sell-off” or 
“rebound” in prices.  Indeed, many market analysts make weekly assessments of trader positions as 
part of their market commentary (Upperman).  In Figure 4, a simple visual analysis does indeed 
reveal an apparent relationship between corn price levels and the PNL for non-commercial corn 
traders.  For instance, in panel A, a high corn price (325 cents per bushel) in early 2004 coincided 
with non-commercial traders being over 40% net long.  However, the visual evidence can be 
misleading.  A high contemporaneous correlation (0.62) between non-commercial PNL and corn 
price levels clearly does not imply causality from positions to prices.  In the following section, the 
data are subjected to a more rigorous causal test for predictive ability. 
Do Positions Lead Returns? 
Equation (4) is estimated to test if trader positions are indeed useful in forecasting returns.  In 
particular, a rejection of 0=jβ ∀j would provide some evidence that the importance placed on the 
COT data by the trading industry is well-founded.   The p-values for this and the other null 
hypothesis of interest are presented in Tables 1, 2, and 3 for the non-commercial, commercial, and 
non-reporting trader groups, respectively.   
 
In Table 1, the null hypothesis that non-commercial positions (PNL) lead or forecast market returns 
is rejected at the 5% level only in soybeans (p-value =0.046).   In five of the model specifications, 
lagged values of the positions enter the equation at just a single lag.  In those where there are more 
than a single lag, the null hypothesis ( 0=jβ ∀j) is still not rejected, and the cumulative position 

impact (∑
=

n

j
j

1
β ) is also not statistically different from zero.   Collectively, there is little evidence that 

non-commercial positions are systematically useful in predicting returns.   Interestingly, however, 
full rationality in futures returns ( jiji ,0∀== βγ ) is rejected at the 5% level in two markets mostly 
to a low-order autocorrelation in returns ( ii ∀= 0γ ), which is rejected at the 5% level in three 
markets. 

The null hypothesis that commercial trader positions do not lead futures returns is rejected in 
CBOT wheat, KCBT wheat, and lean hogs.  So, in three of the ten markets, there is some evidence 
that commercial traders’ positions are useful in forecasting returns.  In both of the wheat markets, 

we reject 0
1

=∑
=

n

j
jβ and find that the cumulative directional impact is positive, suggesting that 

commercials increase long positions prior to price increases.  In lean hogs, the aggregate impact is 
not statistically different from zero, suggesting an unusual directional impact with some lagged β 
coefficients positive and others negative.  While this evidence is not overwhelming, there is 
certainly more evidence of forecasting ability among commercial traders than among non-
commercials.  Again, it is worth noting that full rationality in futures returns ( jiji ,0∀== βγ ) is 
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rejected at the 5% level in six markets primarily due to a low-order autocorrelation in returns 
( ii ∀= 0γ ), which is rejected at the 5% level in four markets. 
 
In Table 3, we see that the null hypothesis that non-reporting traders’ positions do not lead returns is 
not rejected at the 5% level for any market.  There is no substantive evidence that non-reporting 
traders’ positions are useful for forecasting returns.  This finding may not be surprising given the 
likely mixed motives of non-reporting traders, who may be speculators or hedgers.  The results in 
Table 3 again show evidence of low order autocorrelation in returns. 
 
Collectively, the results in Tables 1, 2, and 3 suggest that there is little systematic causality from 
traders’ positions to returns within the agricultural futures markets examined.  The possible 
exception being from commercial traders positions in the CBOT and KCBT wheat markets.  
However, in these cases, the direction of the causality is positive, which is counter to the results 
documented by Wang.  The empirical results do point to one potentially important finding: weekly 
futures returns tend to show some low-order positive autocorrelation.  This result is consistent with 
other research (Boris, Sanders, and Manfredo; Sanders, Irwin, and Leuthold), and it suggests that a 
failure to model lagged returns when investigating the COT data may result in misspecification 
errors. 
 
It is important to verify that the results in Tables 1, 2, and 3 are robust to alternative position 
measures.  So, equation (4) is also estimated using the sentiment index (SI) of Wang as well as just 
the change in the net trader position for each category.  The p-values for just the null hypothesis of 
no causality from positions to returns ( 0=jβ ∀j) are presented in Tables 4, 5, and 6. 
 
Table 4 shows the p-values for the causality tests using non-commercial traders.  The results using 
the PNL are shown first (same as shown in Table 1) followed by the change in net position and the 
sentiment index (equation 2).  There is a single rejection of the null hypothesis (soybeans) using the 
PNL, zero rejections using the change in net position, and one rejection (lean hogs) using the SI.  
While the markets that show rejections seem to be somewhat sensitive to the position indicator, the 
lack of systematic causality is evident across the measures. 
 
Results for commercial traders using alternative position measures are shown in Table 5.   Using the 
PNL, the null hypothesis is rejected in CBOT wheat, KCBT wheat, and lean hogs (5% level).  In 
contrast, using the change in net position as the indicator, the null is rejected in the KCBT wheat 
and corn (5% level).  The sentiment index (SI) provides statistically significant forecasts of returns 
just in the CBOT wheat.  So, no market shows predictability across all measures; but, the CBOT 
wheat and KCBT wheat reject the null hypothesis with two of the three measures.  In each of these 
cases the signs on the lagged position coefficients are positive suggesting that commercial traders 
increase (decrease) long positions prior to price increases (decreases).  For non-reporting traders 
(Table 6), the results are consistent across measures.  The null hypothesis of no causality is only 
rejected in one market (feeder cattle) with a single position measure (SI).  There is no evidence that 
the non-reporting traders’ positions are useful for forecasting returns, regardless of the position 
measure employed. 
 
The evidence that traders’ positions lead futures returns is limited.  Indeed, there is no systematic 
evidence that non-reporting traders’ positions are useful for predicting market returns.  Likewise, 
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for non-commercials, the null hypothesis of no causality is rejected only sporadically across 
markets and position measures.  There is some evidence that commercial positions in CBOT and 
KCBT wheat may provide some forecasting ability for returns.  In these two markets, the null 
hypothesis is rejected for two of the three position measures.  Still, even with these specific 
rejections, there is no pervasive evidence that extends across all markets. 
Do Returns Lead Positions? 
It is important to understand the dynamics of traders’ positions.  For instance, behavior finance 
theories suggest that positive feedback traders may be market de-stabilizing (De Long, et al).  To 
reveal potential trading “styles” among trader groups, equation (5) is estimated with the focus on 
the null that returns do not lead positions ( 0=jθ  ∀j) and whether or not the cumulative directional 

impact is positive ( 0
1

>Θ∑
=

n

j
j ) or negative ( 0

1
<Θ∑

=

n

j
j ).  A positive directional impact is indicative 

of trend followers or “positive feedback” traders because they increase their long position after 
prices increase and vice versa.   A negative directional impact suggests “negative feedback” traders 
or contrarian strategies. 
 
The results from estimating equation (5) are presented in Table 7 for the non-commercial 
classification.  The null hypothesis that returns do not cause positions is rejected at the 5% across all 
markets.  There is a systematic and pervasive tendency for returns to lead positions.  Moreover, the 
aggregate directional impact is statistically different from zero in nine out of ten markets at the 5% 
level with six of those nine markets clearly displaying positive feedback trading on the part of non-
commercial traders.  These results are consistent with the findings of other researchers (e.g., 
Sanders, Irwin, and Leuthold), and they suggest that the non-commercial traders may be utilizing 
trend-following systems. 
 
The results for commercial traders (Table 8) show that the null hypothesis ( 0=jθ  ∀j) is rejected in 

all ten markets.  The cumulative directional impact is positive (∑
=

Θ
n

j
j

1
) is statistically different from 

zero at the 5% level in six of ten markets, of which half display a negative cumulative impact or  
“value” strategies.  In total, seven of the ten directional indicators are negative, indicating that short 
hedgers are scale-up sellers and long hedgers are scale-down buyers.  However, the directional 
evidence is not overwhelming toward either style.  This may stem from a heterogeneous group of 
traders captured in the commercial category. 
 
Perhaps not surprisingly, the results for non-reporting traders are also mixed.  The null hypothesis 
that returns do no lead positions is again rejected in all markets.  However, the cumulative impact is 
different from zero in six out of ten markets with four of those showing a negative feedback style.  
 
In total, the above results build a strong case that returns lead positions.  While the general trading 
style of non-commercials can be classified as one of positive feedback strategies, the results of for 
the commercial and non-reporting categories are more mixed with no clearly dominant style within 
each group.  These results may reflect that both the commercial and non-reporting categories are 
capturing a diverse group of traders, where the composition may change across markets (Ederington 
and Lee).  
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Conclusions 
The goal of this research is to explicitly examine the usefulness of COT data in predicting futures 
market returns.  In light of the evolving nature of the speculative participants in futures markets, and 
the industry’s “fascination” with the positions held by funds (non-commercials), it is important to 
directly address the usefulness of this data in a forecasting framework.  Here, we use a standard 
bivariate Granger causality approach to investigate the lead-lag dynamics between traders’ positions 
and market returns. 
 
The empirical results suggest two primary findings.  First, traders’ positions do not show a 
systematic and pervasive tendency to lead returns.  In particular, there is practically no ability to 
forecast market returns using either non-commercial (funds) or non-reporting (small speculators) 
positions.  There is some weak evidence that commercial (hedgers) positions lead returns in a few 
specific markets (i.e., CBOT and KCBT wheat); however, this is not a pervasive theme across 
markets.  The results are relatively consistent across alternative position measures.   
 
Second, the results clearly demonstrate that positions follow returns.  In particular, non-commercial 
traders increase long positions after prices increase: they are trend followers.  The directional 
findings for commercial traders and non-reporting traders are more mixed, with some markets 
showing trend-following styles and other showing contrarians or value strategies.  The mixed 
directional evidence may reflect a hodgepodge of speculators and hedgers captured in these 
categories.   
 
The results of this work have some very practical ramifications for market participants and 
academic researchers.  First, academic researchers should make note of the strong case for trading 
styles documented in this work, in particular the trend-following displayed by non-commercial 
traders.  This suggests that there may be groups of traders who systematically employ simplified 
trading or hedging rules.  Based on a number of behavior finance theories, the existence of these 
noise traders can have implications for market behavior even though it was not captured by the 
methods specific to this study (De Long, et al).    
 
For practitioners, the usefulness of the COT data in forecasting returns is suspect.  In particular, 
non-commercial or fund positions provide virtually no forecasting information for market returns in 
agricultural futures markets.  Indeed, non-commercial positions are basically a linear extrapolation 
of past price changes, reflecting the trend-following strategies of this group.  If the COT data 
provide any forecasting information, it is likely found in the commercial category and in isolated 
markets.   
 
Overall, the evidence for predictive power is rather weak.  The presented results are consistent with 
those of Dale and Zyren who state that “noncommercial traders follow price trends: they don’t set 
them” (p. 23).  Still, active traders and market analysts frequently rely on the COT data as it is 
widely used in discussing market activity.  So, there is a seeming paradox between the predictive 
power of the COT data as presented in this research and its perceived (or real) usefulness to those in 
the industry.  Perhaps the COT data simply provide market commentators with a convenient talking 
point or justification for otherwise difficult-to-explain market movements.  Alternatively, the COT 
data may indeed provide a glimpse of  the “smart money” in a fashion not easily captured by 
standard empirics.   
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Figure 1.  Combined Futures and Options Open Interest, 1995-2006 
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Figure 2.  Percent of Open Interest by Trader Category, 1995-2006 
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Figure 3.  Non-Commercial Position Measures, 1998-2006. 
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Figure 4.  Non-Commercial Percent Net Long and Futures Prices, 1998-2006. 
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Table 1.  Granger Causality, Non-Commercials, ∑ ∑
= =

−− +++=
m

i

n

j
tjtjititt PNLRR

1 1
εβγα . 

   Hypothesis Tests and P-values   Direction 
Market n,m βj=0, ∀j ∑ βj=0 γi =0, ∀i γi=βj=0, ∀i,j ∑ βj 
Wheat CBOT 1,2 0.186 0.648 0.034 0.156 0.113 
Corn 1,4 0.813 0.813 0.062 0.108 0.223 
Feeder Cattle 1,2 0.144 0.144 0.026 0.042 -0.180 
Wheat KCBOT 6,1 0.235 0.353 0.278 0.313 0.050 
Lean Hogs 1,6 0.440 0.440 0.126 0.160 -0.058 
Live Cattle 1,11 0.901 0.901 0.000 0.000 -0.037 
Wheat MGE 1,1 0.149 0.149 0.891 0.342 0.006 
Soybean Meal 1,1 0.929 0.929 0.661 0.907 0.022 
Soybean Oil 1,1 0.300 0.300 0.379 0.554 0.047 
Soybeans 1,1 0.046 0.046 0.882 0.069 -0.008 
 
 
 
 
 

Table 2.  Granger Causality, Commercials, ∑ ∑
= =

−− +++=
m

i

n

j
tjtjititt PNLRR

1 1
εβγα . 

   Hypothesis Tests and P-values   Direction 
Market m,n βj=0, ∀j ∑ βj=0 γi =0, ∀i γi=βj=0, ∀i,j ∑ βj 
Wheat CBOT 1,2 0.007 0.041 0.066 0.020 0.115 
Corn 1,4 0.213 0.213 0.009 0.017 0.318 
Feeder Cattle 1,5 0.095 0.095 0.009 0.009 0.131 
Wheat KCBOT 6,4 0.050 0.030 0.005 0.005 0.251 
Lean Hogs 7,5 0.051 0.953 0.085 0.024 -0.029 
Live Cattle 1,11 0.688 0.688 0.000 0.000 -0.089 
Wheat MGEX 1,1 0.628 0.628 0.522 0.792 0.030 
Soybean Meal 1,1 0.715 0.715 0.422 0.703 0.044 
Soybean Oil 1,1 0.239 0.239 0.321 0.486 0.059 
Soybeans 1,1 0.831 0.831 0.605 0.824 0.025 
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Table 3.  Granger Causality, Non-Reporting, ∑ ∑
= =

−− +++=
m

i

n

j
tjtjititt PNLRR

1 1
εβγα . 

   Hypothesis Tests and P-values   Direction 
Market m,n βj=0, ∀j ∑ βj=0 γi =0, ∀i γi=βj=0, ∀i,j ∑ βj 
Wheat CBOT 1,5 0.548 0.548 0.038 0.066 0.043 
Corn 1,4 0.339 0.339 0.024 0.040 0.171 
Feeder Cattle 1,5 0.250 0.250 0.015 0.014 0.054 
Wheat KCBOT 1,4 0.684 0.684 0.035 0.064 0.052 
Lean Hogs 1,5 0.083 0.083 0.108 0.047 0.048 
Live Cattle 1,11 0.337 0.337 0.000 0.000 -0.081 
Wheat MGEX 1,1 0.763 0.763 0.617 0.860 0.021 
Soybean Meal 1,1 0.953 0.953 0.665 0.907 0.021 
Soybean Oil 1,1 0.605 0.605 0.929 0.839 -0.004 
Soybeans 1,1 0.780 0.780 0.528 0.672 0.029 
 
 
 
 
 

Table 4.  Granger Causality, Non-Commercials, ∑ ∑
= =

−− +++=
m

i

n

j
tjtjititt PositionRR

1 1
εβγα . 

  P-values for βj=0, ∀j  
Market PNL ∆ Net Position SI 
Wheat CBOT 0.186 0.251 0.311 
Corn 0.813 0.178 0.747 
Feeder Cattle 0.144 0.725 0.482 
Wheat KCBOT 0.235 0.055 0.200 
Lean Hogs 0.440 0.203 0.011 
Live Cattle 0.901 0.823 0.120 
Wheat MGEX 0.149 0.176 0.933 
Soybean Meal 0.929 0.323 0.285 
Soybean Oil 0.300 0.879 0.303 
Soybeans 0.046 0.243 0.276 
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Table 5.  Granger Causality, Commercials, ∑ ∑
= =

−− +++=
m

i

n

j
tjtjititt PositionRR

1 1
εβγα . 

  P-values for βj=0, ∀j  
Market PNL ∆ Net Position SI 
Wheat CBOT 0.007 0.147 0.004 
Corn 0.213 0.052 0.736 
Feeder Cattle 0.095 0.271 0.524 
Wheat KCBOT 0.050 0.018 0.457 
Lean Hogs 0.051 0.096 0.524 
Live Cattle 0.688 0.876 0.680 
Wheat MGEX 0.628 0.163 0.423 
Soybean Meal 0.715 0.256 0.858 
Soybean Oil 0.239 0.530 0.337 
Soybeans 0.831 0.577 0.430 
 
 
 
 
 
 
 

Table 6.  Granger Causality, Non-Reporting, ∑ ∑
= =

−− +++=
m

i

n

j
tjtjititt PositionRR

1 1
εβγα . 

  P-values for βj=0, ∀j  
Market PNL ∆ Net Position SI 
Wheat CBOT 0.548 0.646 0.369 
Corn 0.339 0.203 0.225 
Feeder Cattle 0.250 0.555 0.022 
Wheat KCBOT 0.684 0.783 0.462 
Lean Hogs 0.083 0.503 0.013 
Live Cattle 0.337 0.575 0.480 
Wheat MGEX 0.763 0.806 0.190 
Soybean Meal 0.953 0.415 0.762 
Soybean Oil 0.605 0.555 0.276 
Soybeans 0.780 0.366 0.899 
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Table 7.  Granger Causality, Non-Commercials, ∑ ∑
= =

−− +++=
n

i

m

j
tjtjititt RPNLPNL

1 1
ωθλφ  

 Hypothesis Tests and P-values  Direction 
Market n,m θj=0, ∀j ∑ θj=0 ∑ θj 
Wheat CBOT 1,6 0.000 0.000 -84.6 
Corn 5,2 0.000 0.000 70.6 
Feeder Cattle 8,1 0.000 0.000 -77.6 
Wheat KCBOT 2,1 0.000 0.000 94.7 
Lean Hogs 12,2 0.000 0.000 24.6 
Live Cattle 2,12 0.000 0.031 139.4 
Wheat MGEX 1,8 0.000 0.142 159.4 
Soybean Meal 2,9 0.000 0.001 135.3 
Soybean Oil 10,2 0.000 0.000 -122.6 
Soybeans 11,1 0.000 0.000 58.3 
 
 
 
 
 
 
 

Table 8.  Granger Causality, Commercials, ∑ ∑
= =

−− +++=
n

i

m

j
tjtjititt RPNLPNL

1 1
ωθλφ  

 
 Hypothesis Tests and P-values  Direction 
Market n,m θj=0, ∀j ∑ θj=0 ∑ θj 
Wheat CBOT 7,1 0.000 0.000 36.1 
Corn 2,4 0.000 0.079 -18.6 
Feeder Cattle 5,1 0.000 0.027 27.7 
Wheat KCBOT 2,1 0.000 0.000 -24.7 
Lean Hogs 13,2 0.000 0.000 -28.1 
Live Cattle 8,3 0.000 0.000 -62.7 
Wheat MGEX 7,3 0.000 0.150 -21.9 
Soybean Meal 1,10 0.000 0.109 -29.4 
Soybean Oil 10,1 0.000 0.000 42.5 
Soybeans 11,1 0.000 0.222 -8.8 
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Table 9.  Granger Causality, Non-Reporting, ∑ ∑
= =

−− +++=
n

i

m

j
tjtjititt RPNLPNL

1 1
ωθλφ  

 
 Hypothesis Tests and P-values  Direction 
Market n,m θj=0, ∀j ∑ θj=0 ∑ θj 
Wheat CBOT 5,2 0.000 0.469 4.7 
Corn 1,2 0.000 0.001 -10.8 
Feeder Cattle 2,1 0.000 0.000 28.1 
Wheat KCBOT 3,1 0.000 0.067 9.4 
Lean Hogs 1,6 0.000 0.655 6.2 
Live Cattle 3,1 0.000 0.039 -13.7 
Wheat MGEX 3,1 0.000 0.851 1.3 
Soybean Meal 3,1 0.000 0.000 21.1 
Soybean Oil 5,4 0.000 0.000 -116.0 
Soybeans 1,2 0.000 0.014 -13.5 
 
 
 


